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Abstract

Continuous-time stochastic processes are approximations to physically realizable
phenomena. We quantify one aspect of the approximation errors by characterizing the
asymptotic distribution of the replication errors that arise from delta-hedging derivative
securities in discrete time, and introducing the notion of temporal granularity which
measures the extent to which discrete-time implementations of continuous-time models
can track the payo! of a derivative security. We show that granularity is a particular
function of a derivative contract's terms and the parameters of the underlying stochastic
process. Explicit expressions for the granularity of geometric Brownian motion and an
Ornstein}Uhlenbeck process for call and put options are derived, and we perform Monte
Carlo simulations to illustrate the empirical properties of granularity. ( 2000 Elsevier
Science S.A. All rights reserved.
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1. Introduction

Since Wiener's (1923) pioneering construction of Brownian motion and Ito( 's
(1951) theory of stochastic integrals, continuous-time stochastic processes have
become indispensable to many disciplines ranging from chemistry and physics
to engineering to biology to "nancial economics. In fact, the application of
Brownian motion to "nancial markets (Bachelier, 1900) pre-dates Wiener's
contribution by almost a quarter century, and Merton's (1973) seminal deriva-
tion of the Black and Scholes (1973) option-pricing formula in continuous time
} and, more importantly, his notion of delta hedging and dynamic replication
} is often cited as the foundation of today's multitrillion-dollar derivatives
industry.

Indeed, the mathematics and statistics of Brownian motion have become so
intertwined with so many scienti"c theories that we often forget the fact that
continuous-time processes are only approximations to physically realizable
phenomena. In fact, for the more theoretically inclined, Brownian motion may
seem more `reala than discrete-time discrete-valued processes. Of course,
whether time is continuous or discrete is a theological question best left for
philosophers. But a more practical question remains: under what conditions are
continuous-time models good approximations to speci"c physical phenomena,
i.e., when does time seem `continuousa and when does it seem `discretea? In this
paper, we provide a concrete answer to this question in the context of continu-
ous-time derivative-pricing models, e.g., Merton (1973), by characterizing the
replication errors that arise from delta hedging derivatives in discrete time.

Delta-hedging strategies play a central role in the theory of derivatives and in
our understanding of dynamic notions of spanning and market completeness. In
particular, delta-hedging strategies are recipes for replicating the payo! of
a complex security by sophisticated dynamic trading of simpler securities. When
markets are dynamically complete (e.g., Harrison and Kreps, 1979; Du$e and
Huang, 1985) and continuous trading is feasible, it is possible to replicate certain
derivative securities perfectly. However, when markets are not complete or when
continuous trading is not feasible, e.g., when there are trading frictions or
periodic market closings, perfect replication is not possible and the usual
delta-hedging strategies exhibit tracking errors. These tracking errors are the
focus of our attention.

Speci"cally, we characterize the asymptotic distribution of the tracking errors
of delta-hedging strategies using continuous-record asymptotics, i.e., we imple-
ment these strategies in discrete time and let the number of time periods increase
while holding the time span "xed. Since the delta-hedging strategies we consider
are those implied by continuous-time models like Merton (1973), it is not
surprising that tracking errors arise when such strategies are implemented in
discrete time, nor is it surprising that these errors disappear in the limit of
continuous time. However, by focusing on the continuous-record asymptotics of
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the tracking error, we can quantify the discrepancy between the discrete-time
hedging strategy and its continuous-time limit, answering the question `When is
time continuous?a in the context of replicating derivative securities.

We show that the normalized tracking error converges weakly to a particular
stochastic integral and that the root-mean-squared tracking error is of order
N~1@2 where N is the number of discrete time periods over which the delta
hedging is performed. This provides a natural de"nition for temporal granularity:
it is the coe$cient that corresponds to the O(N~1@2) term. We derive a closed-
form expression for the temporal granularity of a di!usion process paired with
a derivative security, and propose this as a measure of the `continuitya of time.
The fact that granularity is de"ned with respect to a derivative-security/
price-process pair underscores the obvious: there is a need for speci"city in
quantifying the approximation errors of continuous-time processes. It is imposs-
ible to tell how good an approximation a continuous-time process is to a phys-
ical process without specifying the nature of the physical process.

In addition to the general usefulness of a measure of temporal granularity
for continuous-time stochastic processes, our results have other, more
immediate applications. For example, for a broad class of derivative securities
and price processes, our measure of granularity provides a simple method
for determining the approximate number of hedging intervals NH needed to
achieve a target root-mean-squared error d: NH+g2/d2 where g is the granular-
ity coe$cient of the derivative-security/price-process pair. This expression
shows that to halve the root-mean-squared error of a typical delta-hedging
strategy, the number of hedging intervals must be increased approximately
fourfold.

Moreover, for some special cases, e.g., the Black}Scholes case, the granularity
coe$cient can be obtained in closed form, and these cases shed considerable
light on several aspects of derivatives replication. For example, in the
Black}Scholes case, does an increase in volatility make it easier or more di$cult
to replicate a simple call option? Common intuition suggests that the tracking
error increases with volatility, but the closed-form expression (3.2) for granular-
ity shows that it achieves a maximum as a function of p and that beyond this
point, granularity becomes a decreasing function of p. The correct intuition is
that at lower levels of volatility, tracking error is an increasing function of
volatility because an increase in volatility implies more price movements and
a greater likelihood of hedging errors in each hedging interval. But at higher
levels of volatility, price movements are so extreme that an increase in volatility
in this case implies that prices are less likely to #uctuate near the strike price
where delta-hedging errors are the largest, hence granularity is a decreasing
function of p. In other words, at su$ciently high levels of volatility, the
nonlinear payo! function of a call option `looksa approximately linear and is
therefore easier to hedge. Similar insights can be gleaned from other closed-form
expressions of granularity (see, for example, Section 3.2).
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In Section 2, we provide a complete characterization of the asymptotic
behavior of the tracking error for delta hedging an arbitrary derivative
security, and formally introduce the notion of granularity. To illustrate the
practical relevance of granularity, in Section 3 we obtain closed-form expres-
sions for granularity in two speci"c cases: call options under geometric
Brownian motion, and under a mean-reverting process. In Section 4 we check
the accuracy of our continuous-record asymptotic approximations by presenting
Monte Carlo simulation experiments for the two examples of Section 3 and
comparing them to the corresponding analytical expressions. We present other
extensions and generalizations in Section 5, including a characterization of the
sample-path properties of tracking errors, the joint distributions of tracking
errors and prices, a PDE characterization of the tracking error, and more
general loss functions than root-mean-squared tracking error. We conclude in
Section 6.

2. De5ning temporal granularity

The relation between continuous-time and discrete-time models in economics
and "nance has been explored in a number of studies. One of the earliest
examples is Merton (1969), in which the continuous-time limit of the budget
equation of a dynamic portfolio choice problem is carefully derived from
discrete-time considerations (see also Merton, 1975, 1982). Foley's (1975) analyis
of &beginning-of-period' versus &end-of-period' models in macroeconomics is
similar in spirit, though quite di!erent in substance.

More recent interest in this issue stems primarily from two sources. On the
one hand, it is widely recognized that continuous-time models are useful and
tractable approximations to more realistic discrete-time models. Therefore, it is
important to establish that key economic characteristics of discrete-time models
converge properly to the characteristics of their continuous-time counterparts.
A review of recent research along these lines can be found in Du$e and Protter
(1992).

On the other hand, while discrete-time and discrete-state models such as those
based on binomial and multinomial trees, e.g., Cox et al. (1979), He (1990, 1991),
and Rubinstein (1994), may not be realistic models of actual markets, neverthe-
less they are convenient computational devices for analyzing continuous-time
models. Willinger and Taqqu (1991) formalize this notion and provide a review
of this literature.

For derivative-pricing applications, the distinction between discrete-time and
continuous-time models is a more serious one. For all practical purposes,
trading takes place at discrete intervals, and a discrete-time implementation
of Merton's (1973) continuous-time delta-hedging strategy cannot perfectly
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replicate an option's payo!. The tracking error that arises from implementing
a continuous-time hedging strategy in discrete time has been studied by several
authors. One of the "rst studies was conducted by Boyle and Emanuel (1980),
who consider the statistical properties of `locala tracking errors. At the begin-
ning of a su$ciently small time interval, they form a hedging portfolio of options
and stock according to the continuous-time Black}Scholes/Merton delta-hedg-
ing formula. The composition of this hedging portfolio is held "xed during this
time interval, which gives rise to a tracking error (in continuous time, the
composition of this portfolio would be adjusted continuously to keep its dollar
value equal to zero). The dollar value of this portfolio at the end of the interval is
then used to quantify the tracking error.

More recently, Toft (1996) shows that a closed-form expression for the
variance of the cash #ow from a discrete-time delta-hedging strategy can be
obtained for a call or put option in the special case of geometric Brownian
motion. However, he observes that this expression is likely to span several pages
and is therefore quite di$cult to analyze.

But perhaps the most relevant literature for our purposes is Leland's (1985)
investigation of discrete-time delta-hedging strategies motivated by the presence
of transactions costs, an obvious but important motivation (why else would one
trade discretely?) that spurred a series of studies on option pricing with transac-
tions costs, e.g., Figlewski (1989), Hodges and Neuberger (1989), Bensaid et al.
(1992), Boyle and Vorst (1992), Edirisinghe et al. (1993), Henrotte (1993), Avel-
laneda and Paras (1994), Neuberger (1994), and Grannan and Swindle (1996).
This strand of the literature provides compelling economic motivation for
discrete delta-hedging } trading continuously would generate in"nite transac-
tions costs. However, the focus of these studies is primarily the tradeow between
the magnitude of tracking errors and the cost of replication. Since we focus on
only one of these two issues } the approximation errors that arise from applying
continuous-time models discretely } we are able to characterize the statistical
behavior of tracking errors much more generally, i.e., for large classes of price
processes and payo! functions.

Speci"cally, we investigate the discrete-time implementation of continu-
ous-time delta-hedging strategies and derive the asymptotic distribution
of the tracking error in considerable generality by appealing to continuous-
record asymptotics. We introduce the notion of temporal granularity which
is central to the issue of when time may be considered continuous, i.e.,
when continuous-time models are good approximations to discrete-time
phenomena. In Section 2.1, we describe the framework in which our delta-
hedging strategy will be implemented and de"ne tracking error and related
quantities. In Section 2.2, we characterize the continuous-record asymptotic
behavior of the tracking error and de"ne the notion of temporal granularity.
We provide an interpretation of granularity in Section 2.3 and discuss its
implications.
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2.1. Delta hedging in complete markets

We begin by specifying the market environment. For simplicity, we assume
that there are only two traded securities: a riskless asset (bond) and a risky asset
(stock). Time t is normalized to the unit interval so that trading takes place from
t"0 to t"1. In addition, we assume the following:
(A1) markets are frictionless, i.e., there are no taxes, transactions costs, short-

sales restrictions, or borrowing restrictions;
(A2) the riskless borrowing and lending rate is zero; and
(A3) the price P

t
of the risky asset follows a di!usion process

dP
t

P
t

"k(t,P
t
) dt#p(t, P

t
) d=

t
, p(t,P

t
)*p

0
'0 (2.1)

where the coe$cients k and p satisfy standard regularity conditions that guaran-
tee existence and uniqueness of the strong solution of (2.1) and market complete-
ness (see Du$e, 1996).

Note that Assumption (A1) entails little loss of generality since we can always
renormalize all prices by the price of a zero-coupon bond with maturity at t"1
(e.g., Harrison and Kreps, 1979). However, this assumption does rule out the
case of a stochastic interest rate.

We now introduce a European derivative security on the stock that pays
F(P

1
) dollars at time t"1. We will call F( ) ) the payo! function of the derivative.

The equilibrium price of the derivative, H(t,P
t
), satis"es the following partial

di!erential equation (PDE) (e.g., Cox et al., 1985):

LH(t,x)

Lt
#

1

2
p2(t,x)x2

L2H(t,x)

Lx2
"0 (2.2)

with the boundary condition

H(1,x)"F(x). (2.3)

This is a generalization of the standard Black}Scholes model which can be
obtained as a special case when the coe$cients of the di!usion process (2.1) are
constant, i.e., k(t,P

t
)"k, p(t,P

t
)"p, and the payo! function F(P

1
) is given by

Max[P
1
!K, 0] or Max[K!P

1
, 0].

The delta-hedging strategy was introduced by Black and Scholes (1973) and
Merton (1973) and when implemented continuously on t3[0, 1], the payo! of
the derivative at expiration can be replicated perfectly by a portfolio of stocks
and riskless bonds. This strategy consists of forming a portfolio at time t"0
containing only stocks and bonds with an initial investment of H(0,P

0
) and

rebalancing it continuously in a self-xnancing manner } all long positions are
"nanced by short positions and no money is withdrawn or added to the
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1Alternatively, we can conduct the following equivalent thought experiment: while some market
participants can trade costlessly and continuously in time and thus ensure that the price of the
derivative is given by the solution of (2.2) and (2.3), we will focus our attention on other market
participants who can trade only a "nite number of times.

portfolio } so that at all times t3[0, 1] the portfolio contains LH(t,P
t
)/LP

t
shares of the stock. The value of such a portfolio at time t"1 is exactly equal to
the payo!, F(P

1
), of the derivative. Therefore, the price, H(t,P

t
), of the derivative

can also be considered the production cost of replicating the derivative's payo!
F(P

1
) starting at time t.

Such an interpretation becomes important when continuous-time trading is
not feasible. In this case, H(t,P

t
) can no longer be viewed as the equilibrium

price of the derivative. However, the function H(t,P
t
), de"ned formally as

a solution of (2.2)}(2.3), can still be viewed as the production cost H(0,P
0
) of an

approximate replication of the derivative's payo!, and can be used to de"ne the
production process itself (we formally de"ne a discrete-time delta-hedging
strategy below). The term `approximate replicationa indicates the fact that when
continuous trading is not feasible, the di!erence between the payo! of the
derivative and the end-of-period dollar value of the replicating portfolio will not,
in general, be zero; Bertsimas et al. (1997) discuss derivative replication in
discrete time and the distinction between production cost and equilibrium price.
Accordingly, when we refer to H(t,P

t
) as the derivative's `pricea below, we shall

have in mind this more robust interpretation of production cost and approxim-
ate replication strategy.1

More formally, we assume:
(A4) trading takes place only at N regularly spaced times t

i
, i"1,2, N,

where

t
i
3G0,

1

N
,

2

N
,2,

N!1

N H.
Under (A4), the di!erence between the payo! of the derivative and the

end-of-period dollar value of the replicating portfolio } the tracking error } will
be nonzero.

Following Hutchinson et al. (1994), let <(N)
ti

be the value of the replicating
portfolio at time t

i
. Since the replicating portfolio consists of shares of the stock

and the bond, we can express <(N)
ti

as

<(N)
ti

"<(N)
S,ti

#<(N)
B,ti

(2.4)

where <(N)
S,ti

and <(N)
B,ti

denote the dollar amount invested in the stock and the
bond, respectively, in the replicating portfolio at time t

i
. At time t"0 the total
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value of the replicating portfolio is equal to the price (production cost) of the
derivative

<(N)
0

"H(0,P
0
) (2.5)

and its composition is given by

<(N)
S,0

"

LH(t,P
t
)

LP
t
K
t/0

P
0
, <(N)

B,0
"<(N)

0
!<(N)

S,0
, (2.6)

hence the portfolio contains LH(t,P
t
)/LP

t
D
t/0

shares of stock. The replicating
portfolio is rebalanced at time periods t

i
so that

<(N)
S,ti

"

LH(t,P
t
)

LP
t
K
t/ti

P
ti
, <(N)

B,ti
"<(N)

ti
!<(N)

S,ti
. (2.7)

Between time periods t
i
and t

i`1
, the portfolio composition remains unchanged.

This gives rise to nonzero tracking errors e(N)
ti

:

e(N)
ti

,H(t
i
,P

ti
)!<(N)

ti
. (2.8)

The value of the replicating portfolio at time t"1 is denoted by <(N)
1

and the
end-of-period tracking error is denoted by e(N)

1
.

The sequence of tracking errors contains a great deal of information about the
approximation errors of implementing a continuous-time hedging strategy in
discrete time, and in Sections 2.2 and 5 we provide a complete characterization
of the continuous-time limiting distribution of e(N)

1
and Me

ti
N. However, because

tracking errors also contain noise, we investigate the properties of the root-
mean-squared error (RMSE) of the end-of-period tracking error e(N)

1
:

RMSE(N)"JE
0
[(e(N)

1
)2], (2.9)

where E
0
[ ) ] denotes the conditional expectation, conditional on information

available at time t"0. Whenever exact replication of the derivative's payo! is
impossible, RMSE(N) is positive.

Of course, root-mean-squared error is only one of many possible summary
statistics of the tracking error; Hutchinson et al. (1994) suggest other alterna-
tives. A more general speci"cation is the expected loss of the tracking error

E
0
[;(e(N)

1
)],

where ;( ) ) is a general loss function, and we consider this case explicitly in
Section 5.4.

2.2. Asymptotic behavior of the tracking error and RMSE

We characterize analytically the asymptotic behavior of the tracking error
and RMSE by appealing to continuous-record asymptotics, i.e., by letting the
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number of trading periods N increase without bound while holding the time
span "xed. This characterization provides several important insights into the
behavior of the tracking error of general European derivative securities that
previous studies have hinted at only indirectly and only for simple put and call
options (e.g., Boyle and Emanuel, 1980; Hutchinson et al., 1994; Leland, 1985;
Toft, 1996). A byproduct of this characterization is a useful de"nition for the
temporal granularity of a continuous-time stochastic process (relative to a speci-
"c derivative security).

We begin with the case of smooth payo! functions F(P
1
).

Theorem 1. Let the derivative's payow function F(x) in (2.3) be six times continu-
ously diwerentiable and all of its derivatives be bounded, and suppose there exists
a positive constant K such that functions k(q,x) and p(q,x) in (2.1) satisfy

K
Lb`c

LqbLxc
k(q,x)K#K

Lb`c
LqbLxc

p(q,x)K#K
La
Lxa

(xp(q,x))K)K, (2.10)

where (q,x)3[0, 1]][0,R), 1)a)6, 0)b)1, 0)c)3, and all partial de-
rivatives are continuous. Then under assumptions (A1)}(A4),

(a) the RMSE of the discrete-time delta-hedging strategy (2.7) satisxes

RMSE(N)"OA
1

JNB, (2.11)

(b) the normalized tracking error satisxes

JNe(N)
1

NG

where

G,

1

J2P
1

0

p2(t,P
t
)P2

t

L2H(t,P
t
)

LP2
t

d=@
t

(2.12)

(=@
t

is a Wiener process independent of =
t
, and **N++ denotes convergence in

distribution), and

(c) the RMSE of the discrete-time delta-hedging strategy (2.7) satisxes

RMSE(N)"
g

JN
#OA

1

NB, (2.13)
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2For the Black}Scholes case, the formula for the RMSE (2.14)}(2.15) was "rst derived by
Grannan and Swindle (1996). Our results provide a more complete characterization of the tracking
error in their framework } we derive the asymptotic distribution } and our analysis applies to more
general trading strategies than theirs, e.g., they consider strategies obtained by deterministic time
deformations; our framework can accommodate deterministic and stochastic time deformations.

where

g"JE
0
[R], (2.14)

R"

1

2P
1

0
Ap2(t,P

t
)P2

t

L2H(t,P
t
)

LP2
t
B

2
dt. (2.15)

Proof. See the appendix.

Theorem 1 shows that the tracking error is asymptotically equal in distribu-

tion to G/JN (up to O(N~1) terms), where G is a random variable given by
(2.12). The expected value of G is zero by the martingale property of stochastic
integrals. Moreover, the independence of the Wiener processes =@

t
and

=
t
implies that the asymptotic distribution of the normalized tracking error is

symmetric, i.e., in the limit of frequent trading, positive values of the normalized
tracking error are just as likely as negative values of the same magnitude.

This result might seem somewhat counterintuitive at "rst, especially in light of
Boyle and Emanuel's (1980) "nding that in the Black}Scholes framework the
distribution of the local tracking error over a short trading interval is signi"-
cantly skewed. However, Theorem 1(b) describes the asymptotic distribution of
the tracking error over the entire life of the derivative, not over short intervals.
Such an aggregation of local errors leads to a symmetric asymptotic distribu-
tion, just as a normalized sum of random variables will have a Gaussian
distribution asymptotically under certain conditions, e.g., the conditions for
a functional central limit theorem to hold.

Note that Theorem 1 applies to a wide class of di!usion processes (2.1) and to
a variety of derivative payo! functions F(P

1
). In particular, it holds when the

stock price follows a di!usion process with constant coe$cients, as in Black and
Scholes (1973).2 However, the requirement that the payo! function F(P

1
) is

smooth } six times di!erentiable with bounded derivatives } is violated by the
most common derivatives of all, simple puts and calls. In the next theorem, we
extend our results to cover this most basic set of payo! functions.

Theorem 2. Let the payow function F(P
1
) be continuous and piecewise linear, and

suppose (2.10) holds. In addition, let

Kx2
Lap(q,x)

Lxa K)K
2

(2.16)
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for (q,x)3[0, 1]][0,R), 2)a)6, and some positive constant K
2
. Then under

assumptions (A1)}(A4),

(a) the RMSE of the discrete-time delta-hedging strategy (2.7) satisxes

RMSE(N)"
g

JN
#o(1/JN),

where g is given by (2.14)}(2.15), and
(b) the normalized tracking error satisxes

JN e(N)
1

N

1

J2P
1

0

p2(t, P
t
)P2

t

L2H(t, P
t
)

LP2
t

d=@
t
, (2.17)

where =@
t

is a Wiener process independent of =
t
.

Proof. Available from the authors upon request.

By imposing an additional smoothness condition (2.16) on the di!usion
coe$cient p(q, x), Theorem 2 assures us that the conclusions of Theorem 1 also
hold for the most common types of derivatives, those with piecewise linear
payo! functions. Theorems 1 and 2 allow us to de"ne the coe$cient of temporal
granularity g for any combination of continuous-time process MP

t
N and deriva-

tive payo! function F(P
1
) as the constant associated with the leading term of the

RMSE's continuous-record asymptotic expansion:

g,S
1

2
E

0CP
1

0
Ap2(t,P

t
)P2

t

L2H(t,P
t
)

LP2
t
B

2
dtD (2.18)

where H(t,P
t
) satis"es (2.2) and (2.3).

2.3. Interpretation of granularity

The interpretation for temporal granularity is clear: it is a measure of the
approximation errors that arise from implementing a continuous-time delta-
hedging strategy in discrete time. A derivative-pricing model } recall that this
consists of a payo! function F(P

1
) and a continuous-time stochastic process for

P
t
}with high granularity requires a larger number of trading periods to achieve

the same level of tracking error as a derivative-pricing model with low granular-
ity. In the former case, time is &grainier', calling for more frequent hedging
activity than the latter case. More formally, according to Theorems 1 and 2, to
a "rst-order approximation the RMSE of an N-trade delta-hedging strategy is
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g/JN. Therefore, if we desire the RMSE to be within some small value d, we
require

N+

g2

d2

trades in the unit interval. For a "xed error d, the number of trades needed to
reduce the RMSE to within d grows quadratically with granularity. If one
derivative-pricing model has twice the granularity of another, it would require
four times as many delta-hedging transactions to achieve the same RMSE
tracking error.

From (2.18) is it clear that granularity depends on the derivative-pricing
formula H(t,P

t
) and the price dynamics P

t
in natural ways. Eq. (2.18) formalizes

the intuition that derivatives with higher volatility and higher &gamma' risk
(large second derivative with respect to stock price) are more di$cult to hedge,
since these cases imply larger values for the integrand in (2.18). Accordingly,
derivatives on less volatile stocks are easier to hedge. Consider a stock price
process which is almost deterministic, i.e., p(t,P

t
) is very small. This implies

a very small value for g, hence derivatives on such a stock can be replicated
almost perfectly, even if continuous trading is not feasible. Alternatively, such
derivatives require relatively few rebalancing periods N to maintain small
tracking errors.

Also, a derivative with a particularly simple payo! function should be easier
to hedge than derivatives on the same stock with more complicated payo!s. For
example, consider a derivative with the payo! function F(P

1
)"P

1
. This deriva-

tive is identical to the underlying stock, and can always be replicated perfectly
by buying a unit of the underlying stock at time t"0 and holding it until
expiration. The tracking error for this derivative is always equal to zero, no
matter how volatile the underlying stock is. This intuition is made precise by
Theorem 1, which describes exactly how the error depends on the properties of
the stock price process and the payo! function of the derivative: it is determined
by the behavior of the integral R, which tends to be large when stock prices
&spend more time' in regions of the domain that imply high volatility and high
convexity or gamma of the derivative.

We will investigate the sensitivity of g to the speci"cation of the stock price
process in Sections 3 and 4.

3. Applications

To develop further intuition for our measure of temporal granularity, in this
section we derive closed-form expressions for g in two important special cases:
the Black}Scholes option pricing model with geometric Brownian motion, and
the Black}Scholes model with a mean-reverting (Ornstein}Uhlenbeck) process.
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3.1. Granularity of geometric Brownian motion

Suppose that stock price dynamics are given by

dP
t

P
t

"kdt#pd=
t
, (3.1)

where k and p are constants. Under this assumption we obtain an explicit
characterization of the granularity g.

Theorem 3. Under Assumptions (A1)}(A4), stock price dynamics (3.1), and the
payow function of simple call and put options, the granularity g in (2.13) is given by

g"KpAP
1

0

exp[!*kt`-/(P0 @K)~p2@2+2

p2(1`t)
]/(4pJ1!t2) dtB

1@2
, (3.2)

where K is the option's strike price.

Proof. Available from the authors upon request.

It is easy to see that g"0 if p"0 and g increases with p in the neighborhood
of zero. When p increases without bound, the granularity g decays to zero, which
means that it has at least one local maximum as a function of p. The granularity
g also decays to zero when P

0
/K approaches zero or in"nity. In the important

special case of k"0, we conclude by direct computation that g is a unimodal
function of P

0
/K that achieves its maximum at P

0
/K"exp(p2/2).

The fact that granularity is not monotone increasing in p may seem counterin-
tuitive at "rst } after all, how can delta-hedging errors become smaller for larger
values of p? The intuition follows from the fact that at small levels of p, an
increase in p leads to larger granularity because there is a greater chance that the
stock price will #uctuate around regions of high gamma, i.e., near the money
where L2H(t,P

t
)/LP2

t
is large, leading to greater tracking errors. However, at

very high levels of p, prices #uctuate so wildly that an increase in p will decrease
the probability that the stock price stays in regions of high gamma for very long.
In these extreme cases, the payo! function &looks' approximately linear, hence
granularity becomes a decreasing function of p.

Also, we show below that g is not very sensitive to changes in k when p is
su$ciently large. This implies that, for an empirically relevant range of para-
meter values, g, as a function of the initial stock price, achieves its maximum
close to the strike price, i.e., at P

0
/K+1. These observations are consistent with

the behavior of the tracking error for "nite values of N that we see in the Monte
Carlo simulations of Section 4.

When stock prices follow a geometric Brownian motion, expressions similar
to (3.2) can be obtained for derivatives other than simple puts and calls. For
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example, for a &straddle', consisting of one put and one call option with the same
strike price K, the constant g is twice as large as for the put or call option alone.

3.2. Granularity of a mean-reverting process

Let p
t
,ln(P

t
) and suppose

dp
t
"(!c(p

t
!(a#bt))#b) dt#p d=

t
, (3.3)

where b"k!p2/2 and a is a constant. This is an Ornstein}Uhlenbeck process
with a linear time trend, and the solution of (3.3) is given by

p
t
"(p

0
!a)e~ct#(a#bt)#pP

t

0

e~c(t~s)d=
s
. (3.4)

Theorem 4. Under assumptions (A1)}(A4), stock price dynamics (3.3), and the
payow function of simple call and put options, the granularity g in (2.13) is given by

g"KpAP
1

0

Jc exp[!c*a`kt`(-/(P0 @K)~a)%91(~ct)~p2@2+2

p2*c(1~t)`1~%91(~2ct)+
]

4pJ1!tJc(1!t)#1!exp(!2ct)
dtB

1@2
, (3.5)

where K is the option's strike price.

Proof. Available from the authors upon request.

Expression (3.5) is a direct generalization of (3.2): when the mean-reversion
parameter c is set to zero, the process (3.3) becomes a geometric Brownian
motion and (3.5) reduces to (3.2). Theorem 4 has some interesting qualitative
implications for the behavior of the tracking error in presence of mean-rever-
sion. We will discuss them in detail in the next section.

4. Monte Carlo analysis

Since our analysis of granularity is based entirely on continuous-record
asymptotics, we must check the quality of these approximations by performing
Monte Carlo simulation experiments for various values of N. The results of
these Monte Carlo simulations are reported in Section 4.1. We also use Monte
Carlo simulations to explore the qualitative behavior of the RMSE for various
parameter values of the stock price process, and these simulations are reported
in Section 4.2.
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Fig. 1. Empirical probability density functions of (a) the tracking error and (b) the normalized
tracking error (dashed line) are plotted for di!erent values of the trading frequency N. (b) Also,
shows the empirical probability density function of the asymptotic distribution (2.17) (solid line). The
stock price process is given by (3.1) with parameters k"0.1, p"0.3, and P

0
"1.0. The option is

a European call (put) option with strike price K"1.

4.1. Accuracy of the asymptotics

We begin by investigating the distribution of the tracking error e(N) for various
values of N. We do this by simulating the hedging strategy of Section 2.2 for call
and put options assuming that price dynamics are given by a geometric
Brownian motion (3.1). According to Theorem 1, the asymptotic expressions for
the tracking error and the RMSE are the same for put and call options since
these options have the same second partial derivative of the option price with
respect to the current stock price. Moreover, it is easy to verify, using the put-call
parity relation, that these options give rise to identical tracking errors. When the
stock price process P

t
follows a geometric Brownian motion, the stock price at

time t
i`1

is distributed (conditional on the stock price at time t
i
) as

P
ti
exp((k!p2/2)*t#pJ*tg), where g&N(0, 1). We use this relation to

simulate the delta-hedging strategy. We set the parameters of the stock price
process to k"0.1, p"0.3, and P

0
"1.0, and let the strike price be K"1. We

consider N"10, 20, 50, and 100, and simulate the hedging process 250,000
times for each value of N.

Fig. 1a shows the empirical probability density function (PDF) of e(N)
1

for each
N. As expected, the distribution of the tracking error becomes tighter as the
trading frequency increases. It is also apparent that the tracking error can be
signi"cant even for N"100. Fig. 1b contains the empirical PDFs of the

normalized tracking error, JNe(N)
1

, for the same values of N. These PDFs are
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Table 1
The sensitivity of the RMSE as a function of the initial price P

0
. The RMSE is estimated using

Monte Carlo simulation. Options are European calls and puts with strike price K"1. 250,000
simulations are performed for every set of parameter values. The stock price follows a geometric
Brownian motion (3.1). The drift and di!usion coe$cients of the stock price process are k"0.1 and
p"0.3. RMSE(N) is compared to the asymptotic approximation gN~1@2 in (2.13)}(3.2). The relative
error (RE) of the asymptotic approximation is de"ned as DgN~1@2!RMSE(N)D/RMSE(N)]100%.

Parameters gN~1@2 RMSE(N) R.E.
(%)

Call option Put option

N P
0

H(0,P
0
) RMSE(N)

H

H(0,P
0
) RMSE(N)

H

10 0.50 0.0078 0.0071 8.9 7E-4 9.64 0.501 0.014
20 0.50 0.0055 0.0052 7.9 7E-4 6.88 0.501 0.010
50 0.50 0.0035 0.0033 5.9 7E-4 4.43 0.501 0.007

100 0.50 0.0025 0.0024 3.1 7E-4 3.22 0.501 0.005

10 0.75 0.0259 0.0248 3.8 0.023 1.08 0.273 0.091
20 0.75 0.0183 0.0177 2.9 0.023 0.760 0.273 0.065
50 0.75 0.0116 0.0113 2.6 0.023 0.490 0.273 0.041

100 0.75 0.0082 0.0082 2.3 0.023 0.345 0.273 0.029

10 1.00 0.0334 0.0327 4.1 0.119 0.269 0.119 0.269
20 1.00 0.0236 0.0227 3.4 0.119 0.192 0.119 0.192
50 1.00 0.0149 0.0145 2.3 0.119 0.122 0.119 0.122

100 1.00 0.0106 0.0104 1.9 0.119 0.087 0.119 0.087

10 1.25 0.0275 0.0263 5.8 0.294 0.088 0.044 0.588
20 1.25 0.0194 0.0187 3.9 0.294 0.064 0.044 0.423
50 1.25 0.0123 0.0120 2.7 0.294 0.041 0.044 0.271

100 1.25 0.0087 0.0087 1.8 0.294 0.029 0.044 0.195

10 1.50 0.0181 0.0169 7.7 0.515 0.033 0.015 1.130
20 1.50 0.0128 0.0122 5.3 0.515 0.024 0.015 0.816
50 1.50 0.0081 0.0076 2.9 0.515 0.015 0.015 0.528

100 1.50 0.0057 0.0056 3.0 0.515 0.011 0.015 0.373

compared to the PDF of the asymptotic distribution (2.17), which is estimated
by approximating the integral in (2.17) using a "rst-order Euler scheme. The
functions in Fig. 1b are practically identical and indistinguishable, which sug-

gests that the asymptotic expression for the distribution of JNe(N)
1

in Theorem
1(b) is an excellent approximation to the "nite-sample PDF for values of N as
small as ten.

To evaluate the accuracy of the asymptotic expression g/JN for "nite values

of N, we compare g/JN to the actual RMSE from Monte Carlo simulations of
the delta-hedging strategy of Section 2.2. Speci"cally, we simulate the delta-
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Table 2
The sensitivity of the RMSE as a function of volatility p. The RMSE is estimated using Monte Carlo
simulation. Options are European calls and puts with strike price K"1. 250,000 simulations are
performed for every set of parameter values. The stock price follows a geometric Brownian motion
(3.1). The drift coe$cient of the stock price process is k"0.1, and the initial stock price is P

0
"1.0.

RMSE(N) is compared to the asymptotic approximation gN~1@2 in (2.13)}(3.2). The relative error
(RE) of the asymptotic approximation is de"ned as DgN~1@2!RMSE(N)D/RMSE(N)]100%.

Parameters gN~1@2 Call and put options

N p RMSE(N) R.E. (%) H(0,P
0
) RMSE(N)

H

10 0.3 0.0334 0.0327 4.1 0.119 0.269
20 0.3 0.0236 0.0227 3.4 0.119 0.192
50 0.3 0.0149 0.0145 2.3 0.119 0.122

100 0.3 0.0106 0.0104 1.9 0.119 0.087

10 0.2 0.0219 0.0212 3.4 0.080 0.266
20 0.2 0.0155 0.0151 3.0 0.080 0.189
50 0.2 0.0098 0.0096 2.1 0.080 0.121

100 0.2 0.0069 0.0068 1.7 0.080 0.086

10 0.1 0.0100 0.0102 1.6 0.040 0.255
20 0.1 0.0071 0.0071 0.04 0.040 0.177
50 0.1 0.0045 0.0044 1.1 0.040 0.111

100 0.1 0.0032 0.0031 0.9 0.040 0.078

hedging strategy for a set of European put and call options with strike price
K"1 under geometric Brownian motion (3.1) with di!erent sets of parameter
values for (p, k, and P

0
). The tracking error is tabulated as a function of these

parameters and the results are summarized in Tables 1}3.

Tables 1}3 show that g/JN is an excellent approximation to the RMSE
across a wide range of parameter values for (k, p,P

0
), even for as few as N"10

delta-hedging periods.

4.2. Qualitative behavior of the RMSE

The Monte Carlo simulations of Section 4.1 show that the RMSE increases
with the di!usion coe$cient p in an empirically relevant range of parameter
values (see Table 2), and that the RMSE is not very sensitive to the drift rate k of
the stock price process when p is su$ciently large (see Table 3). These properties
are illustrated in Figs. 2a and 3. Fig. 2a plots the logarithm of the RMSE against
the logarithm of trading periods N for p"0.1, 0.2, and 0.3 } as p increases, the
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Table 3
The sensitivity of the RMSE as a function of the drift k. The RMSE is estimated using Monte Carlo
simulation. Options are European calls and puts with strike price K"1. 250,000 simulations are
performed for every set of parameter values. The stock price follows a geometric Brownian motion
(3.1). The di!usion coe$cient of the stock price process is p"0.3, the initial stock price is P

0
"1.0,

and the number of trading periods is N"20. RMSE(N) is compared to the asymptotic approxima-
tion gN~1@2 in (2.13)}(3.2). The relative error (RE) of the asymptotic approximation is de"ned as
DgN~1@2!RMSE(N)D/RMSE(N)]100%.

Parameters gN~1@2 Call and put options

k RMSE(N) R.E. (%) H(0,P
0
) RMSE(N)

H

0.0 0.0235 0.0226 4.3 0.119 0.189
0.1 0.0236 0.0229 3.4 0.119 0.192
0.2 0.0230 0.0226 1.7 0.119 0.190
0.3 0.0218 0.0220 1.0 0.119 0.184

Fig. 2. (a) The logarithm of the root-mean-squared error log
10

(RMSE(N)) is plotted as a function of
the logarithm of the trading frequency log

10
(N). The option is a European call (put) option with the

strike price K"1. The stock price process is given by (3.1) with parameters k"0.1 and P
0
"1.0.

The di!usion coe$cient of the stock price process takes values p"0.3 (x's), p"0.2 (o's) and p"0.1
(#'s). (b) The root-mean-squared error RMSE is plotted as a function of the initial stock price P

0
.

The option is a European put option with the strike price K"1. The parameters of the stock price
process are k"0.1 and p"0.3.

locus of points shifts upward. Fig. 3 shows that granularity g is not a monotone
function of p and goes to zero as p increases without bound.

Fig. 2b plots the RMSE as a function of the initial stock price P
0
. RMSE is

a unimodal function of P
0
/K (recall that the strike price has been normalized to
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Fig. 3. The granularity g is plotted as a function of p and k. The option is a European call (put)
option with strike price K"1. The stock price process is geometric Brownian motion and initial
stock price P

0
"1.

K"1 in all our calculations), achieving its maximum around one and decaying
to zero as P

0
/K approaches zero or in"nity (see Table 1). This con"rms the

common intuition that close-to-the-money options are the most di$cult to
hedge (they exhibit the largest RMSE).

Finally, the relative importance of the RMSE can be measured by the ratio of
the RMSE to the option price: RMSE(N)/H(0,P

0
). This quantity is the root-

mean-squared error per dollar invested in the option. Table 1 shows that this
ratio is highest for out-of-the-money options, despite the fact that the RMSE is
highest for close-to-the-money options. This is due to the fact that the option
price decreases faster than the RMSE as the stock moves away from the strike.

Now consider the case of mean-reverting stock price dynamics (3.3). Recall
that under these dynamics, the Black}Scholes formula still holds, although the
numerical value for p can be di!erent than that of a geometric Brownian motion
because the presence of mean-reversion can a!ect conditional volatility, holding
unconditional volatility "xed; see Lo and Wang (1995) for further discussion.
Nevertheless, the behavior of granularity and RMSE is quite di!erent in this
case. Fig. 4 plots the granularity g of call and put options for the Or-
nstein}Uhlenbeck process (3.3) as a function of a and P

0
. Fig. 4a assumes a value

of 0.1 for the mean-reversion parameter c and Fig. 4b assumes a value of 3.0. It is
clear from these two plots that the degree of mean reversion c has an enormous
impact on granularity. When c is small, Fig. 4a shows that the RMSE is highest
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Fig. 4. Granularity g is plotted as a function of P
0

and a. The option is a European call (put) option
with the strike price K"1. The parameters of the stock price process are p"0.2 and k"0.05. The
stock price process is given by (3.4). Mean-reversion parameter c takes two values: (a) c"0.1 and (b)
c"3.0.

when P
0

is close to the strike price and is not sensitive to a. But when c is large,
Fig. 4b suggests that the RMSE is highest when exp(a) is close to the strike price
and is not sensitive to P

0
.

The in#uence of c on granularity can be understood by recalling that
granularity is closely related to the option's gamma (see Section 2.3). When c is
small, the stock price is more likely to spend time in the neighborhood of the
strike price } the region with the highest gamma or L2H(t,P

t
)/LP2

t
} when P

0
is

close to K. However, when c is large, the stock price is more likely to spend time
in a neighborhood of exp(a), thus g is highest when exp(a) is close to K.

5. Extensions and generalizations

The analysis of Section 2 can be extended in a number of directions, and we
brie#y outline four of the most important of these extensions here. In Section 5.1,
we show that the normalized tracking error converges in a much stronger sense
than simply in distribution, and that this stronger &sample-path' notion of
convergence } called, ironically, &weak' convergence } can be used to analyze the
tracking error of American-style derivative securities. In Section 5.2 we charac-
terize the asymptotic joint distributions of the normalized tracking error and
asset prices, a particularly important extension for investigating the tracking
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error of delta hedging a portfolio of derivatives. In Section 5.3, we provide
another characterization of the tracking error, one that relies on PDEs, that
o!ers important computational advantages. And in Section 5.4, we consider
alternatives to mean-squared error loss functions and show that for quite
general loss functions, the behavior of the expected loss of the tracking error is
characterized by the same stochastic integral (2.17) as in the mean-squared-error
case.

5.1. Sample-path properties of tracking errors

Recall that the normalized tracking error process is de"ned as

JNe(N)
t

"JN(H(t,P
t
)!<(N)

t
), t3[0, 1].

It can be shown that JNe(N)
t

converges weakly to the stochastic process G
t
,

characterized by the stochastic integral in (2.12) as a function of its upper limit:

G
t
"

1

J2P
t

0

p2(t,P
s
)P2

s

L2H(s,P
s
)

LP2
s

d=@
s
.

The proof of this result consists of two steps. The "rst step is to establish that the

sequence of measures induced by JNe(N)
t

is tight (relatively compact). This can

be done by verifying local inequalities for the moments of processes JNe(N)
t

using the machinery developed in the proof of Theorem 2 (we must use
Burkholder's inequality instead of the isometric property and HoK lder's inequal-
ity instead of Schwarz's inequality throughout } details are available from the
authors upon request). The second step is to characterize the limiting process.
Such a characterization follows from the proof of Theorem 1(b) in the appendix
and the fact that the results in Du$e and Protter (1992) guarantee weak
convergence of stochastic processes, not just convergence of their one-dimen-
sional marginal distributions.

This stronger notion of convergence yields stronger versions of Theorems 1
and 2 that can be used to analyze a number of sample-path properties of the
tracking error by appealing to the Continuous Mapping Theorem (Billingsley,
1986). This well-known result shows that the asymptotic distribution of any
continuous functional m( ) ) of the normalized tracking error is given by m(G

t
). For

example, the maximum of the normalized tracking error over the entire life of

the derivative security, max
t
JNe(N)

t
, is distributed as max

t
G

t
asymptotically.

These results can be applied to the normalized tracking errors of American-
style derivatives in a straightforward manner. Such derivatives di!er from
European derivatives in one respect: they can be exercised prematurely. There-
fore, the valuation of these derivatives consists of computing both the derivative
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price function H(t,P
t
) and the optimal exercise schedule, which can be represent-

ed as a stopping time q. Then the tracking error at the moment when the
derivative is exercised behaves asymptotically as Gq/JN; (some technical regu-
larity conditions, e.g., the smoothness of the exercise boundary, are required to
ensure convergence; see, e.g., Kushner and Dupuis, 1992).

The tracking error, conditional on the derivative not being exercised prema-

turely, is distributed asymptotically as (G
1
/JNDq"1).

5.2. Joint distributions of tracking errors and prices

Theorems 1 and 2 provide a complete characterization of the tracking error
and RMSE for individual derivatives, but what is often of more practical interest
is the behavior of a portfolio of derivatives. Delta hedging a portfolio of
derivatives is typically easier because of the e!ects of diversi"cation. As long as
tracking errors are not perfectly correlated across derivatives, the portfolio
tracking error will be less volatile than the tracking error of individual derivatives.

To address portfolio issues, we require the joint distribution of tracking errors
for multiple stocks, as well as the joint distribution of tracking errors and prices.
Consider another stock with price P(2)

t
governed by the di!usion equation

dP(2)
t

P(2)
t

"k(2)(t,P(2)
t

) dt#p(2)(t,P(2)
t

) d=(2)
t

(5.1)

where=(2)
t

can be correlated with=
t
. According to the proof of Theorem 1(b)

in the Appendix, the random variables (=
ti`1

!=
ti
)2!(t

i`1
!t

i
) and

=(2)
ti`1

!=(2)
ti

are uncorrelated. This follows from the fact that, for every pair of
standard normal random variables X and > with correlation o, X"o>#
J1#o2Z, where Z is a standard normal random variable, independent of >.
Thus X and >2!1 are uncorrelated. It follows that the Wiener processes
=@

t
and=(2)

t
are independent. Therefore, as N increases without bound, the pair

of random variables (JNe(N)
1

,P(2)
1

) converges in distribution to

(JNe(N)
1

, P(2)
1

)NA
1

J2P
1

0

p2(t,P
t
)P2

t

L2H(t,P
t
)

LP2
t

d=@
t
,P(2)

1 B (5.2)

where=@
t
is independent of =

t
and =(2)

t
.

An immediate corollary of this result is that the normalized tracking error is
uncorrelated with any asset in the economy. This follows easily from (5.2) since,
conditional on the realization of P

t
and P(2)

t
, t3[0, 1], the normalized tracking

error has zero expected value asymptotically. However, this does not imply that

the asymptotic joint distribution of (JNe(N)
1

,P(2)
1

) does not depend on the
correlation between=

t
and=(2)

t
} it does, since this correlation determines the

joint distribution of P
t
and P(2)

1
.
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The above argument applies without change when the price of the second
stock follows a di!usion process di!erent from (5.1), and can also easily be
extended to the case of multiple stocks.

To derive the joint distribution of the normalized tracking errors for multiple
stocks, we consider the case of two stocks since the generalization to multiple
stocks is obvious. Let =

t
and =(2)

t
have mutual variation d=

t
d=(2)

t
"

o(t,P
t
, P(2)

t
) dt, where o( ) ) is a continuously di!erentiable function with bounded

"rst-order partial derivatives. We have already established that the asymptotic
distribution of the tracking error is characterized by the stochastic integral
(2.12). To describe the asymptotic joint distribution of two normalized tracking
errors, it is su$cient to "nd the mutual variation of the Wiener processes in the
corresponding stochastic integrals. According to the proof of Theorem 1(b) in
the appendix, this amounts to computing the expected value of the product

((=
ti`1

!=
ti
)2!(t

i`1
!t

i
)) ((=(2)

ti`1
!=(2)

ti
)2!(t

i`1
!t

i
)).

Using Ito( 's formula, it is easy to show that the expected value of the above
expression is equal to

E
0
[2o2(t,P

ti
,P(2)

ti
)](*t)2#O((*t)5@2).

This implies that o2(t,P
t
, P(2)

t
) is the mutual variation of the two Wiener

processes in the stochastic integrals (2.12) that describe the asymptotic distribu-
tions of the normalized tracking errors of the two stocks. Together with
Theorem 1(b), this completely determines the asymptotic joint distribution of
the two normalized tracking errors, and is a generalization of the results of
Boyle and Emanuel (1980).

Note that the correlation of two Wiener processes describing the asymptotic
behavior of two normalized tracking errors is always nonnegative, regardless of
the sign of the mutual variation of the original Wiener processes=

t
and=(2)

t
. In

particular, when two derivatives have convex price functions, this means that
even if the returns on the two stocks are negatively correlated, the tracking
errors resulting from delta hedging derivatives on these stocks are asymp-
totically positively correlated.

5.3. A PDE characterization of the tracking error

It is possible to derive an alternative characterization of the tracking error
using the intimate relation between di!usion processes and PDEs. Although this
may seem super#uous given the analytical results of Theorems 1 and 2, the
numerical implementation of a PDE representation is often computationally
more e$cient.

To illustrate our approach, we begin with the RMSE. According to Theorem
1(c), the RMSE can be completely characterized asymptotically if g is known.
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Using the Feynman-Kac representation of the solutions of PDEs (Karatzas and
Shreve, 1991, Proposition 4.2.), we conclude that g2"u(0,P

0
), where u(t,x)

solves the following:

C
L
Lt

#k(t, x)x
L
Lx

#

1

2
p2(t,x)x2

L2
Lx2Du(t,x)#

1

2Ap2(t,x)x2
L2H(t,x)

Lx2 B
2
"0

(5.3)

u(1,x)"0, ∀x. (5.4)

The PDE (5.3)}(5.4) is of the same degree of di$culty as the fundamental PDE
(2.2)}(2.3) that must be solved to obtain the derivative-pricing function H(t,P

t
).

This new representation of the RMSE can be used to implement an e$cient
numerical procedure for calculating RMSE without resorting to Monte Carlo
simulation. Results from some preliminary numerical experiments provide en-
couraging evidence of the practical value of this new representation.

Summary measures of the tracking error with general loss functions can also
be computed numerically along the same lines, using the Kolmogorov backward
equation. The probability density function of the normalized tracking error

JNe(N)
1

can be determined numerically as a solution of the Kolmogorov forward
equation (see, e.g., Karatzas and Shreve, 1991, pp. 368}369).

5.4. Alternative measures of the tracking error

As we observed in Section 2.2, the root-mean-squared error is only one of
many possible summary measures of the tracking error. An obvious alternative
is the ¸

p
-norm:

E
0
[De(N)

1
Dp]1@p (5.5)

where p is chosen so that the expectation is "nite (otherwise the measure will not
be particularly informative). More generally, the tracking error can be sum-
marized by

E
0
[;(e(N)

1
)] (5.6)

where ;( ) ) is an arbitrary loss function.
Consider the set of measures (5.5) "rst and assume for simplicity that

p3[1, 2]. From (2.17), it follows that

E
0
[De(N)

1
Dp]1@p&N~1@2E
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p2(t,P
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)P2
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L2H(t,P
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)

LP2
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d=@
t K

p

D
1@p

(5.7)

hence, the moments of the stochastic integral in (2.17) describe the asymptotic
behavior of the moments of the tracking error. Conditional on the realization of
MP

t
N, t3[0, 1], the stochastic integral on the right side of (5.7) is normally
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distributed with zero mean and variance

P
1

0
Ap2(t,P

t
)P2

t

L2H(t,P
t
)

LP2
t
B

2
dt

which follows from Hull and White (1987). The intuition is that, conditional on
the realization of the integrand, the stochastic integral behaves as an integral of
a deterministic function with respect to the Wiener process which is a normal
random variable. Now let m

p
denote an ¸

p
-norm of the standard normal

random variable. If X is a standard normal random variable, then
m

p
"E

0
[DXDp]1@p, hence (5.7) can be rewritten as:

E
0
[De(N)

1
Dp]1@p&

m
p

JN
E
0
[Rp@2]1@p (5.8)

where R is given by (2.15).
As in the case of a quadratic loss function, R plays a fundamental role here in

describing the behavior of the tracking error. When p"2, R enters (5.8) linearly
and closed-form expressions can be derived for special cases. However, even
when pO2, the qualitative impact of R on the tracking error is the same as for
p"2 and our discussion of the qualitative behavior of the tracking error applies
to this case as well.

For general loss functions;( ) ) that satisfy certain growth conditions and are
su$ciently smooth near the origin, the delta method can be applied and we
obtain

E
0
[;(e(N)

1
)]&

1

N
D;A(0)Dg2"

1

N
D;A(0)DE

0
[R]. (5.9)

When ;( ) ) is not di!erentiable at zero, the delta method cannot be used.
However, we can use the same strategy as in our analysis of ¸

p
-norms to tackle

this case. Suppose that ;( ) ) is dominated by a quadratic function. Then
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Now let

m
U
(x)"E

0
[;(xg)], g&N(0, 1).

Then

E
0
[;(e(N)

1
)]+E

0
[m

U
(JR/N)]. (5.11)

When the loss function ;( ) ) is convex, m
U
( ) ) is an increasing function (by

second-order stochastic dominance). Therefore, the qualitative behavior of the
measure (5.6) is also determined by R and is the same as that of the RMSE.
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6. Conclusions

We have argued that continuous-time models are meant to be approxima-
tions to physical phenomena, and as such, their approximation errors should be
better understood. In the speci"c context of continuous-time models of deriva-
tive securities, we have quanti"ed the approximation error through our de"ni-
tion of temporal granularity. The combination of a speci"c derivative security
and a stochastic process for the underlying asset's price dynamics can be
associated with a measure of how &grainy' the passage of time is. This measure is
related to the ability to replicate the derivative security through a delta-hedging
strategy implemented in discrete time. Time is said to be very granular if the
replication strategy does not work well; in such cases, time is not continuous. If,
however, the replication strategy is very e!ective, time is said to be very smooth
or continuous.

Under the assumption of general Markov di!usion price dynamics, we show
that the tracking errors for derivatives with su$ciently smooth or continuous
piecewise linear payo! functions behave asymptotically (in distribution) as

G/JN. We characterize the distribution of the random variable G as a stochas-
tic integral, and also obtain the joint distribution of G with prices of other assets
and with other tracking errors. We demonstrate that the root-mean-squared

error behaves asymptotically as g/JN, where the constant g is what we call the
coe$cient of temporal granularity. For two special cases } call or put options on
geometric Brownian motion and on an Ornstein}Uhlenbeck process } we are
able to evaluate the coe$cient of granularity explicitly.

We also consider a number of extensions of our analysis, including an
extension to alternative loss functions, a demonstration of the weak convergence
of the tracking error process, a derivation of the joint distribution of tracking
errors and prices, and an alternative characterization of the tracking error in
terms of PDEs that can be used for e$cient numerical implementation.

Because these results depend so heavily on continuous-record asymptotics,
we perform Monte Carlo simulations to check the quality of our asymptotics.
For the case of European puts and calls with geometric Brownian motion price
dynamics, our asymptotic approximations are excellent, providing extremely
accurate inferences over the range of empirically relevant parameter values, even
with a small number of trading periods.

Of course, our de"nition of granularity is not invariant to the derivative
security, the underlying asset's price dynamics, and other variables. But we
regard this as a positive feature of our approach, not a drawback. After all, any
plausible de"nition of granularity must be a relative one, balancing the coarse-
ness of changes in the time domain against the coarseness of changes in the
&space' or price domain. Although the title of this paper suggests that time is the
main focus of our analysis, it is really the relation between time and price that
determines whether or not continuous-time models are good approximations to
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physical phenomena. It is our hope that the de"nition of granularity proposed in
this paper is one useful way of tackling this very complex issue.

Appendix A

The essence of these proofs involves the relation between the delta-hedging
strategy and mean-square approximations of solutions of systems of stochastic
di!erential equations described in Milstein (1974, 1987, 1995). Readers interest-
ed in additional details and intuition should consult these references directly.
We present the proof of Theorem 1 only; the proofs for the other theorems are
available from the authors upon request.

A.1. Proof of Theorem 1(a)

First we observe that the regularity conditions (2.10) imply the existence of
a positive constant K

1
such that

K
Lb`c

LqbLxc
H(q,x)K)K

1
(A.1)

for (q,x)3[0, 1]][0,R),0)b)1, and 1)c)4, and all partial derivatives
are continuous. Since the price of the derivative H(q, x) is de"ned as a solution of
(2.2), it is equal to the expectation of F(P

1
) with respect to the equivalent

martingale measure (Du$e, 1996), i.e.,

H(q,x)"E
(t/q,PHt /x)

[F(PH
1
)], (A.2)

where

dPH
t
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t

"p(t,PH
t
) d=H

t
. (A.3)

and =H
t

is a Brownian motion under the equivalent martingale measure. Eq.
(A.1) now follows from Friedman (1975, Theorems 5.4 and 5.5, p. 122). The same
line of reasoning is followed in He (1989, p. 68). Of course, one could derive (A.1)
using purely analytic methods, e.g. Friedman (1964; Theorem 10, p. 72; Theorem
11, p. 24; and Theorem 12, p. 25). Next, by Ito( 's formula,
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. (A.4)
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According to (2.2), the "rst integral on the right-hand side of (A.4) is equal to
zero. Thus,
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t
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dP
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(A.5)

which implies that H(t,P
t
) can be characterized as a solution of the system of

stochastic di!erential equations
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At the same time, <(N)
1

is given by
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which can be interpreted as a solution of the following approximation scheme of
(A.6) as de"ned in Milstein (1987):
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where XM and PM denote approximations to X and P, respectively. We now
compare (A.8) to the Euler approximation scheme in Milstein (1995):
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Regularity conditions (2.10) and (A.1) allow us to conclude (see Milstein, 1995,
Theorem 2.1) that a one-step version of the approximation scheme (A.9) has
order-of-accuracy two in expected deviation and order-of-accuracy one in
mean-squared deviation; see Milstein (1987, 1995) for de"nitions and further
discussion. It is easy to check that the approximation scheme (A.8) exhibits this
same property. Milstein (1995, Theorem 1.1) relates the one-step order-of-
accuracy of the approximation scheme to its order-of-accuracy on the whole
interval (see also Milstein, 1987). We use this theorem to conclude that (A.8) has
mean-square order-of-accuracy 1/2, i.e.,
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We now recall that X(t,P
t
)"H(t,P

t
) and XM (1, P

1
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1
and conclude that
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which completes the proof. h

A.2. Proof of Theorem 1(b)

We follow the same line of reasoning as in the proof of Theorem 1(a), but we
use the Milstein approximation scheme for (A.6) instead of the Euler scheme:
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According to Milstein (1974) (see also Milstein, 1995, Theorem 2.1), this one-step
scheme has order-of-accuracy two in expected deviation and 1.5 in mean-
squared deviation. It is easy to check by comparison that the scheme
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has the same property. We now use Milstein (1995, Theorem 1.1) to conclude
that
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where f"O(1
N
) means that lim

N?=
NJE

t/0
[ f 2](R. By Slutsky's theorem,

we can ignore the O(1
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) term in considering the convergence in distribution of
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converges weakly on [0, 1] to a standard Brownian motion =@
t
, which is

independent of=
t
. The notation [Nt] denotes the integer part of Nt and we use

the convention +~1
0

"0. We complete the proof by applying Du$e and Protter
(1992, Lemma 5.1 and Corollary 5.1).

A.3. Proof of Theorem 1(c)

Eq. (2.13) follows immediately from Theorem 1(a) and the proof of Theorem
1(b). Relation (A.14), established as a part of the proof of Theorem 1(b),
guarantees that convergence in (2.12) occurs not only in distribution, but also in
mean-square. Combined with Theorem 1(b), (2.13) implies that
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Eq. (2.14) follows from (A.16) using the isometric property of stochastic integrals.
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